AI journalism tools in counteracting fake realities

Authors

DOI:

https://doi.org/10.47475/2070-0695-2024-54-4-31-38

Keywords:

AI journalism, disinformation, fake news, fake reality, automation, fact-checking, factcheck, ethical standards, journalistic skills, artificial intelligence

Abstract

The article examines the role of journalism in countering fake reality through the use of artificial intelligence (AI) technologies. It analyzes the current state of AI tools and technologies that enable the automation of the fact-checking process and improve the quality of news content in the media. A brief overview of domestic and international publications on this topic is provided. The article indicates such Internet services as ClaimBuster, Snopes, PolitiFact, Factmata, Google Fact Check Tools, Botometer, DeepFact, Project Debater and others. Many of these have already become effective assistants for journalists today. The primary methods used in the research include analysis and synthesis, case studies, and comparison methods, which have allowed the exploration of fundamental approaches to applying artificial intelligence in journalism. These include automatic fact-checking systems and algorithmic analysis of large data sets. The research identifies both positive and negative aspects of the use of artificial intelligence in journalistic activities. Special emphasis is placed on the fact that while AI enhances the efficiency of journalists’ work by increasing the speed and accuracy of information processing, full automation of the news creation process poses threats such as the loss of journalistic skills, a decline in the quality of editorial control, excessive automation risks, and inevitable errors in data interpretation. The article concludes that artificial intelligence plays a key role in modern journalism: today, various algorithms and AI methods are being used to improve the quality and accessibility of information. Key findings of the research also include the necessity of developing strategies for integrating AI into journalism, including investment in training the journalistic audience and implementing ethical standards. This will help maintain audience trust and ensure high-quality information.

Author Biography

Mohammed Wahhab Abbood Abbood, Russian University of Friendship of Peoples, Russia, Moscow

postgraduate student of the Department of Theory and History of Journalism

References

Abbood, M. W. A. (2024). Inakovost’ individual’nogo bytiya cheloveka v usloviyakh feykovoy real’nosti [Otherness of individual existence in the context of fake reality]. Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Filologiya. Zhurnalistika, t. 24, vyp. 2, 212–219. https://doi.org/10.18500/1817-7115-2024-24-2-212-219. (In Russ).

Karimov, K. S. (2022). Osnovnye problemy iskusstvennogo intellekta v nauke [The main problems of artificial intelligence in science]. Postsovetskiy materik, 4, 59–65. https://doi.org/10.48137/23116412_2022_4_59. (In Russ).

Lizikova, M. S. (2022) Eticheskie i pravovye voprosy razvitiya iskusstvennogo intellekta [Ethical and Legal Issues in the Development of Artificial Intelligence]. Trudy Instituta gosudarstva i prava RAN, t. 17. 1, 178–194. https://doi.org/10.35427/2073- 4522-2022-17-1-lizikova. (In Russ).

Lukina, M. M., Zamkov, A. V., Krasheninnikova, M. A. & Kul’chitskaya, D. Yu. (2022). Iskusstvennyy intellekt v rossiyskikh media i zhurnalistike: k diskussii ob eticheskoy kodifikatsii [Artificial Intelligence in Russian Media and Journalism: Towards a Discussion on Ethical Codification]. Voprosy teorii i praktiki zhurnalistiki, t. 11, 4, 680–694. https://doi.org/10.17150/2308-6203.2022.11(4).680- 694. (In Russ).

Makashоva, V . V. (2023). Dezinformatsiya kak predmet nauchnogo analiza: traditsionnye i novye podkhody [Disinformation as a Subject of Scientific Analysis: Traditional and New Approaches]. Medial’manakh, 6, 16–21. https://doi.org/10.30547/ mediaalmanah.6.2023.1622. (In Russ).

Medvedeva, M. V. (2023) Mediakompetentnost’ i riski ispol’zovaniya neyrosetey molodezh’yu [Media Competence and Risks of Using Neural Networks by Youth]. Kommunikatsii v usloviyakh tsifrovykh izmeneniy : sbornik materialov VII Mezhdunarodnoy nauchno-prakticheskoy konferentsii. Sankt-Peterburg, 28-29 noyabrya 2023 g. SPb. : Izd-vo SPbGEU, 67–69. (In Russ).

Muratova, N. & Toshpulatova, N. & Alimova, G. (2020). Fake news: dezinformatsiya v media [Fake news: disinformation in the media]. Tashkent: Innovatsion rivojlanish nashriyot-matbaa uyi, 104 p. (In Russ).

Sternin, I. A. & Shesterina, A. M. (2021). Markery feyka v mediatekstakh [Markers of Fake in Media Texts]. Voronezh: izdatel’stvo «RITM», 60 p. (In Russ).

Tret’yakov A. O., Filatova O. G., Zhuk D. V., Gorlushkina N. N. & Puchkovskaya A. A. (2018) Metod opredeleniya russkoyazychnykh feykovykh novostey s ispol’zovaniem elementov iskusstvennogo intellekta [Method for Identifying Russian-language Fake News Using Elements of Artificial Intelligence]. International Journal of Open Information Technologies, t. 6, 12, 99–105.

Shaderkin, I. A. (2021) Slabye storony iskusstvennogo intellekta v meditsine [Weaknesses of Artificial Intelligence in Medicine]. Rossiyskiy zhurnal telemeditsiny i elektronnogo zdravookhraneniya, 7 (2), 50–52. https://doi.org/10.29188/2712-9217-2021-7-2-50- 52. (In Russ).

Shvetsov, A. N., Dianov, S. V., Popova, A. A. & Kuznetsov, D. O. (2022). Modelirovanie protsessov rasprostraneniya dezinformatsii v informatsionnykh setyakh [Modeling the Processes of Disinformation Spread in Information Networks]. Vestnik Cherepovetskogo gosudarstvennogo universiteta, 6 (111), 89–109. https://doi.org/10.23859/1994-0637-2022-6-111-7. (In Russ).

Diakopoulos, N. (2019). Automating the News: How Algorithms Are Rewriting the Media. Harvard University Press, 304 p. https:// doi.org/10.1177/1464884919876179.

Newman, N., Fletcher, R., Kalogeropoulos, A., Levy, D. A. L. & Nielsen, R. K. (2023). Reuters Institute Digital News Report. https://doi.org/10.2139/ssrn.2619576.

Simon, F. M. (2024). Artificial Intelligence in the News: How AI Retools, Rationalizes, and Reshapes Journalism and the Public Arena. Columbia Journalism Review, February 6, https://clck.ru/3C9num.

Zhou, J. (2023). An Evaluation of State-of-the-Art Large Language Models for Sarcasm Detection. ArXiv, October 7. https://doi. org/10.48550/arXiv.2312.03706.

Published

2024-12-27

How to Cite

Abbood, M. W. A. (2024). AI journalism tools in counteracting fake realities. Znak: Problemnoe Pole Mediaobrazovanija, (4 (54), 31–38. https://doi.org/10.47475/2070-0695-2024-54-4-31-38

Issue

Section

Публичная сфера в аспекте массовых коммуникаций

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.