Artificial intelligence in journalistic interviews: possibilities, risks and ethical aspects of use

Authors

DOI:

https://doi.org/10.47475/2070-0695-2025-57-3-116-125

Keywords:

neural network, transformation of the journalistic profession, interview

Abstract

Modern journalism is undergoing a transformation under the influence of neural networks that automate routine tasks: analyze and transform large amounts of data, generate personalized questions for interviews. This increases the efficiency of work, but raises questions about ethics and the impact on professional culture. The aim of the work is to study the perception and experience of using neural networks in journalistic interviews among various groups of the professional community, to identify the main advantages and challenges of automation of journalistic work, and to discuss the need for ethical regulation of the use of artificial intelligence in modern journalism. The study used general scientific (synthesis, analysis, generalization) and empirical methods (secondary analysis of VTsIOM data, online survey of students, teachers and practicing journalists, targeted sampling (n=175), the survey was conducted in December 2024. Key findings: neural networks transform the process of preparing and conducting interviews, increasing the efficiency of journalists, but at the same time calling into question the preservation of traditional professional skills and ethical standards. Most respondents see neural networks as a tool for increasing the efficiency and speed of work, but doubts and difficulties in assessing their benefits were recorded, which indicates the need for additional training and information, including in professional education. The issue of the ethical side of using neural networks remains controversial. There is no doubt that certain work formats are actively used and have a legitimate status - automation of data processing, transcription of interviews and creation of brief summaries of materials will allow journalists to focus on more creative and analytical tasks. Neural networks are perceived in the professional community as an effective tool for automating routine tasks, accelerating data processing, forming questions and creating brief summaries.

Author Biographies

Elizaveta Koroleva, Ekaterinburg Academy of Contemporary Art, Ekaterinburg, Russian Federation

student

Anastasia Obolenskaya, Ekaterinburg Academy of Contemporary Art, Ekaterinburg, Russian Federation

student

Larisa Petrova, Ekaterinburg Academy of Contemporary Art, Ekaterinburg, Russian Federation

Candidate of Sociological Sciences, Associate Professor, Professor

References

Avdonina, N. S. (2021). Mediatekst kak sredstvo formirovaniya mediagramotnosti u studentov-zhurnalistov [Media text as a means of developing media literacy among journalism students]. Pis'ma v Emissiya. Offlayn, 12, available at: http://emissia.org/offline/2021/3017.htm (accessed: 20.02.2025). (In Russ).

Akulicheva, A. R., Alieva, S. A. (2023). Neyset' i zhurnalistika: eticheskiy vopros ispol'zovaniya umnykh tekhnologiy v SMI [Neural network and journalism: ethical issues of using smart technologies in mass media]. Molodoy uchenyy, 51 (498). 115–117. (In Russ).

Algalieva, G. S., Shalkarbek, A. (2024). Iskusstvennyy intellekt kak faktor transformatsii v PR, marketinge i mediaprostranstve [Artificial intelligence as a transformation factor in PR, marketing and media space]. Rossiyskaya shkola svyazey s obshchestvennost'yu, 33, 10–27. https://doi.org/10.24412/2949-2513-2023-33-10-27. (In Russ).

Baimurzina, A. A., Gileva, D. K., Kharchenko, V. S. (2024). Iskusstvo vykhodit v gorod: pozitsionirovanie pablik-art v mediaprostranstve Yekaterinburga [Art goes to the city: positioning of public art in Yekaterinburg's media space]. Upravlenie kul'turoy, 1 (9). 28–37. (In Russ).

Davydov, S. G., Zamkov, A. V., Krasheninnikova, M. A., Lukina, M. M. (2023). Ispol'zovanie tekhnologiy iskusstvennogo intellekta v rossiyskikh media i zhurnalistike [Use of artificial intelligence technologies in Russian media and journalism]. Vestnik Moskovskogo universiteta. Seriya 10: Zhurnalistika, 48 (5). 3-21. https://doi.org/10.30547/vestnik.journ.5.2023.321. (In Russ).

Druzhinina, A. A. (2024). Iskusstvennyy intellekt i restavratsiya: kak algoritmy menyayut podkhody k sokhraneniyu iskusstva [Artificial intelligence and restoration: how algorithms change approaches to art preservation]. Upravlenie kul'turoy, 3(4) (12). 18–24. https://doi.org/10.70202/2949074X-2024-3-4-18-24. (In Russ).

Zamkov, A. V. (2019). Novostnoy mediarobot: teoreticheskie aspekty intellektual'noy sistemy generatsii kontenta [News media robot: theoretical aspects of intelligent content generation system]. Voprosy teorii i praktiki zhurnalistiki, 8 (2). 260–273. https://doi.org/10.17150/2308-6203.2019.8(2).260-273. (In Russ).

Zamkov, A. V., Krasheninnikova, M. A., Lukina, M. M. (2020). Trudovaya deyatel'nost' zhurnalista: lyudi ili roboty [Journalist's work: people or robots]. Voprosy teorii i praktiki zhurnalistiki, 9 (1), 46-64. https://doi.org/10.17150/2308-6203.2020.9(1).46-64. (In Russ).

Ilyakhina, A. A., Deeva, I. V. (2024). Perspektivy primeneniya tekhnologiy iskusstvennogo intellekta v zhurnalistike [Prospects for applying artificial intelligence technologies in journalism]. Vestnik nauki, 3 (1) (70). 580–588. (In Russ).

Litvinova, A. I. (2023). Ne otmena traditsiy, a dopolnenie. Kak sledovanie tekhnologicheskomu progressu menyayet sostav i praktiki zhurnalistskikh redaktsiy. Retz. na kn.: Kosterich A. (2022) News Nerds: Institutional Change in Journalism. Oxford: Oxford University Press [Not cancellation but addition. How following technological progress changes the composition and practices of journalistic editorial offices. Review of the book: Kosterich A. (2022) News Nerds: Institutional Change in Journalism. Oxford: Oxford University Press]. Monitoring obshchestvennogo mneniya: ekonomicheskie i sotsial'nye peremeny, 2 (174), 350–360. https://doi.org/10.14515/monitoring.2023.2.2373. (In Russ).

Lukina, M. M., Zamkov, A. V., Krasheninnikova, M. A., Kulchitskaya, D. Yu. (2022). Iskusstvennyy intellekt v rossiyskikh media i zhurnalistike: k diskussii ob eticheskoy kodifikatsii [Artificial intelligence in Russian media and journalism: towards a discussion on ethical codification]. Voprosy teorii i praktiki zhurnalistiki, 11 (4), 680–694. https://doi.org/10.17150/2308-6203.2022.11(4).680-694. (In Russ).

Ma, F. (2024). Analiz strategiy tsifrovoy transformatsii zhurnalistiki [Analysis of digital transformation strategies in journalism]. Nauchnyy aspect, 14 (8). 1776–1781. (In Russ).

Makarova, L. S., Batashev, Yu. V. (2023). Perspektivy ispol'zovaniya tekhnologiy prikladnogo iskusstvennogo intellekta v sisteme verifikatsii informatsii SMI i sotsial'nykh media [Prospects for using applied artificial intelligence technologies in the system of verifying information in mass media and social media]. Znak: problemnoe pole mediaobrazovanija, 2 (48). 118–126. https://doi.org/10.47475/2070-0695-2023-48-2-118-126. (In Russ).

Maryina, L. P., Amelicheva, D. A. (2023). Mediynye aspekty kul'turnogo naslediya Sankt-Peterburga v brendinge kreativnykh prostranstv [Media aspects of St. Petersburg's cultural heritage in the branding of creative spaces]. Upravlenie kul'turoy, 1 (5), 26–32. (In Russ).

Mezenova, O. S. (2024). «Arkhitekturnoe nasledie»: mediynyy portret ponyatiya na materiale regional'nykh SMI Urala ["Architectural heritage": media portrait of the concept based on materials from regional media of the Urals]. Upravlenie kul'turoy, 1 (9). 18–27. (In Russ).

Nerents, D. V. (2024). Primenenie iskusstvennogo intellekta v sovremennoy teleindustrii: vozmozhnosti i ugroza [Application of artificial intelligence in modern television industry: opportunities and threats]. Zhurnalist. Sotsial'nye kommunikatsii, 2 (54). 49–61. (In Russ).

Nerents, D. V. (2024). Yuridicheskie i eticheskie problemy regulirovaniya primeneniya iskusstvennogo intellekta v sovremennykh massmedia [Legal and ethical problems of regulating the use of artificial intelligence in modern mass media]. Vestnik RGGU. Seriya: Literaturovedenie. Yazykoznanie. Kul'turologiya, 11, 122–137. https://doi.org/10.28995/2686-7249-2024-11-122-137. (In Russ).

Pobedin, P. K. (2024). Primenenie tsifrovykh tekhnologiy v politicheskikh protsessakh v SShA, ES, Kitae i Rossii. Sravnitel'nyy analiz [Application of digital technologies in political processes in the USA, EU, China and Russia. Comparative analysis]. Postsovetskiy materik, 1 (41). 48–61. https://doi.org/10.48137/23116412_2024_1_48. (In Russ).

Khakimzyanova, L. M., Kharchenko, V. S. (2025). Gorodskoy patriotizm v mediaprostranstve Yekaterinburga: keysy «Skver», «Lev na Vaynera», «Dom Toporkova» [Urban patriotism in Yekaterinburg's media space: cases of "Square", "Lion on Vaynera", "Toporkov's House"]. Upravlenie kul'turoy, 4 (1) (13). 76–85. https://doi.org/10.70202/2949-074X-2025-4-1-76-85. (In Russ).

Khachikyan, E. I., Zorina, M. V. (2024). Perspektivy razvitiya zhurnalistiki v epokhu neyrosetey [Prospects for journalism development in the era of neural networks]. Sovremennyy uchenyy, 3. 202–207. https://doi.org/10.58224/2541-8459-2024-3-202-207. (In Russ).

Published

2025-09-09

How to Cite

Koroleva, E., Obolenskaya, A., & Petrova, L. (2025). Artificial intelligence in journalistic interviews: possibilities, risks and ethical aspects of use. Znak: Problemnoe Pole Mediaobrazovanija, (3 (57), 116–125. https://doi.org/10.47475/2070-0695-2025-57-3-116-125

Issue

Section

Теория журналистики и вопросы методов медиаисследований

Similar Articles

<< < 1 2 3 4 > >> 

You may also start an advanced similarity search for this article.